Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
EClinicalMedicine ; 46: 101344, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1734348

ABSTRACT

Background: A single dose strategy may be adequate to confer population level immunity and protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, especially in low- and middle-income countries where vaccine supply remains limited. We compared the effectiveness of a single dose strategy of the Oxford-AstraZeneca or Pfizer-BioNTech vaccines against SARS-CoV-2 infection across all age groups and over an extended follow-up period. Methods: Individuals vaccinated in North-West London, UK, with either the first dose of the Oxford-AstraZeneca or Pfizer-BioNTech vaccines between January 12, 2021 and March 09, 2021, were matched to each other by demographic and clinical characteristics. Each vaccinated individual was additionally matched to an unvaccinated control. Study outcomes included SARS-CoV-2 infection of any severity, COVID-19 hospitalisation, COVID-19 death, and all-cause mortality. Findings: Amongst matched individuals, 63,608 were in each of the vaccine groups and 127,216 were unvaccinated. Between 14 and 84 days of follow-up after matching, there were 534 SARS-CoV-2 infections, 65 COVID-19 hospitalisations, and 190 deaths, of which 29 were categorized as due to COVID-19. The incidence rate ratio (IRR) for SARS-CoV-2 infection was 0.85 (95% confidence interval [CI], 0.69 to 1.05) for Oxford-Astra-Zeneca, and 0.69 (0.55 to 0.86) for Pfizer-BioNTech. The IRR for both vaccines was the same at 0.25 (0.09 to 0.55) and 0.14 (0.02 to 0.58) for reducing COVID-19 hospitalization and COVID-19 mortality, respectively. The IRR for all-cause mortality was 0.25 (0.15 to 0.39) and 0.18 (0.10 to 0.30) for the Oxford-Astra-Zeneca and Pfizer-BioNTech vaccines, respectively. Age was an effect modifier of the association between vaccination and SARS-CoV-2 infection of any severity; lower hazard ratios for increasing age. Interpretation: A single dose strategy, for both vaccines, was effective at reducing COVID-19 mortality and hospitalization rates. The magnitude of vaccine effectiveness was comparatively lower for SARS-CoV-2 infection, although this was variable across the age range, with higher effectiveness seen with older adults. Our results have important implications for health system planning -especially in low resource settings where vaccine supply remains constrained.

3.
BMC Health Serv Res ; 21(1): 1008, 2021 Sep 23.
Article in English | MEDLINE | ID: covidwho-1438273

ABSTRACT

BACKGROUND: Hospitals in England have undergone considerable change to address the surge in demand imposed by the COVID-19 pandemic. The impact of this on emergency department (ED) attendances is unknown, especially for non-COVID-19 related emergencies. METHODS: This analysis is an observational study of ED attendances at the Imperial College Healthcare NHS Trust (ICHNT). We calibrated auto-regressive integrated moving average time-series models of ED attendances using historic (2015-2019) data. Forecasted trends were compared to present year ICHNT data for the period between March 12, 2020 (when England implemented the first COVID-19 public health measure) and May 31, 2020. We compared ICHTN trends with publicly available regional and national data. Lastly, we compared hospital admissions made via the ED and in-hospital mortality at ICHNT during the present year to the historic 5-year average. RESULTS: ED attendances at ICHNT decreased by 35% during the period after the first lockdown was imposed on March 12, 2020 and before May 31, 2020, reflecting broader trends seen for ED attendances across all England regions, which fell by approximately 50% for the same time frame. For ICHNT, the decrease in attendances was mainly amongst those aged < 65 years and those arriving by their own means (e.g. personal or public transport) and not correlated with any of the spatial dependencies analysed such as increasing distance from postcode of residence to the hospital. Emergency admissions of patients without COVID-19 after March 12, 2020 fell by 48%; we did not observe a significant change to the crude mortality risk in patients without COVID-19 (RR 1.13, 95%CI 0.94-1.37, p = 0.19). CONCLUSIONS: Our study findings reflect broader trends seen across England and give an indication how emergency healthcare seeking has drastically changed. At ICHNT, we find that a larger proportion arrived by ambulance and that hospitalisation outcomes of patients without COVID-19 did not differ from previous years. The extent to which these findings relate to ED avoidance behaviours compared to having sought alternative emergency health services outside of hospital remains unknown. National analyses and strategies to streamline emergency services in England going forward are urgently needed.


Subject(s)
COVID-19 , Pandemics , Communicable Disease Control , Emergency Service, Hospital , Hospitals , Humans , London , Retrospective Studies , SARS-CoV-2
4.
JMIR Public Health Surveill ; 7(9): e30010, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1417039

ABSTRACT

BACKGROUND: On March 11, 2020, the World Health Organization declared SARS-CoV-2, causing COVID-19, as a pandemic. The UK mass vaccination program commenced on December 8, 2020, vaccinating groups of the population deemed to be most vulnerable to severe COVID-19 infection. OBJECTIVE: This study aims to assess the early vaccine administration coverage and outcome data across an integrated care system in North West London, leveraging a unique population-level care data set. Vaccine effectiveness of a single dose of the Oxford/AstraZeneca and Pfizer/BioNTech vaccines were compared. METHODS: A retrospective cohort study identified 2,183,939 individuals eligible for COVID-19 vaccination between December 8, 2020, and February 24, 2021, within a primary, secondary, and community care integrated care data set. These data were used to assess vaccination hesitancy across ethnicity, gender, and socioeconomic deprivation measures (Pearson product-moment correlations); investigate COVID-19 transmission related to vaccination hubs; and assess the early effectiveness of COVID-19 vaccination (after a single dose) using time-to-event analyses with multivariable Cox regression analysis to investigate if vaccination independently predicted positive SARS-CoV-2 in those vaccinated compared to those unvaccinated. RESULTS: In this study, 5.88% (24,332/413,919) of individuals declined and did not receive a vaccination. Black or Black British individuals had the highest rate of declining a vaccine at 16.14% (4337/26,870). There was a strong negative association between socioeconomic deprivation and rate of declining vaccination (r=-0.94; P=.002) with 13.5% (1980/14,571) of individuals declining vaccination in the most deprived areas compared to 0.98% (869/9609) in the least. In the first 6 days after vaccination, 344 of 389,587 (0.09%) individuals tested positive for SARS-CoV-2. The rate increased to 0.13% (525/389,243) between days 7 and 13, before then gradually falling week on week. At 28 days post vaccination, there was a 74% (hazard ratio 0.26, 95% CI 0.19-0.35) and 78% (hazard ratio 0.22, 95% CI 0.18-0.27) reduction in risk of testing positive for SARS-CoV-2 for individuals that received the Oxford/AstraZeneca and Pfizer/BioNTech vaccines, respectively, when compared with unvaccinated individuals. A very low proportion of hospital admissions were seen in vaccinated individuals who tested positive for SARS-CoV-2 (288/389,587, 0.07% of all patients vaccinated) providing evidence for vaccination effectiveness after a single dose. CONCLUSIONS: There was no definitive evidence to suggest COVID-19 was transmitted as a result of vaccination hubs during the vaccine administration rollout in North West London, and the risk of contracting COVID-19 or becoming hospitalized after vaccination has been demonstrated to be low in the vaccinated population. This study provides further evidence that a single dose of either the Pfizer/BioNTech vaccine or the Oxford/AstraZeneca vaccine is effective at reducing the risk of testing positive for COVID-19 up to 60 days across all age groups, ethnic groups, and risk categories in an urban UK population.


Subject(s)
Anti-Vaccination Movement/statistics & numerical data , COVID-19 Vaccines/standards , Immunization Programs/standards , Anti-Vaccination Movement/psychology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Cohort Studies , Hospitalization/statistics & numerical data , Humans , Immunization Programs/statistics & numerical data , London , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL